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SAT

• Is the boolean formula satisfiable:

(a ∨ b) ∧ (b ∨ c)

• Can’t try all options: for n variables there are 2n options, NP-Hard problem.
• SAT Solvers – Heuristic on which assignments should be tried first
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Algorithm Selection of SAT Solvers

Improvement over time without hors-concours solvers
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Figure 1: Results of the 2018 Sparkle SAT Challenge [LH18]
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Algorithm Selection of SAT Solvers

• Current state-of-the-art algorithm selection uses features such as:
• Number of clauses and variables
• Statistics of the Variable-Clause and Clause graphs

Boolean Formula Features Extractor Select Algorithm

Run instance on the
selected algorithm
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Features Extractor

• Features Extraction requires human knowledge
• Requires recognizing the right set of features
• Can we learn directly from the formula?

Boolean Formula Select Algorithm

Run instance on the
selected algorithm
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End-to-End Algorithm Selection

• Lorregia et al. [LMSS16] showed a CNN for algorithm
selection by encoding SAT instance to an image.

• Downsides:
• No notion of locality
• Image has resized the image to 128x128
• Did not reach state-of-the-art level
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Graph Neural Networks

Figure 2: Graph Neural Networks, adapted from [SLRPW21]
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Graph Neural Networks for SAT Algorithm Selection

• Multiple binary classification heads, each one selects the best solver from a pair of
solvers

• Multi-class classification
• Probability to solve an instance
• Runtime Regression
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Closed Gap

mSBS −mS
mSBS −mVBS

mSBS is the total runtime of the single best solver, mS is the total runtime of the AS, mVBS

is the virtual best
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(Some) Results
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Figure 3: Closed Gap on SAT2011 Crafted + Industrial (only small instances)
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Challenges and Future Work

• Large Formulas that cannot fit into GPU memory.
Possible Solution: sampling.

• Not enough data: there are around 1300 training instances.
Possible Solution: generate more data (in progress), transfer learning.
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Algorithm Selection of SAT Solvers

Currently, we have manual features
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Graph Representation of SAT formula

• Variable Graph [NLBH+04]: node for each variable, an edge between variables that
occur in at least one clause

Hadar Shavit – SAT Algorithm Selection Using Graph Neural Networks



Graph Representation of SAT formula

• Clause Graph [NLBH+04]: node for each clause, edge whenever they share a negated
literal
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Graph Neural Networks

• Message passing between nodes
• In the kth iteration, the value of node i is:
x(k)i = γ(k)(x(k−1)i ,□j∈N(i)ϕ

(k)(x(k−1)i , x(k−1)j , ej,i)) γ, ϕ are differentiable functions (MLP,
LSTM), □ is an aggregation function (sum, mean), N(i) are the neighbors of i.

Figure 5: From [May20]
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Graph Representation of SAT formula

• Variable Clause Graph [NLBH+04]: node for each variable, clause and edge whenever
a variable occurs in a clause

x1 x2 x3

c1 c2

Figure 6: Literal Clause Graph [SLB+18]
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Graph Representation of SAT formula

• Literal Clause Graph [SLB+18]: node for every literal (2 nodes per variable, x and ¬x),
edge between each literal and a clause that contains it, the second type of edges
between the two literals of the same variable

x1 x1 x2 x2

c1 c2

Figure 7: Literal Clause Graph [SLB+18]
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Graph Level Prediction

• Each node has a “vote” and we aggregate the votes
• Aggregate the nodes latent features using add, mean or max
• Local Pooling: similar to pooling in CNNs
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Graph Neural Networks for SAT

• End to End solving:
• Predicting whether the formula is SAT or unSAT
• NeuroSAT –

• End to End SAT solving from literal clause graph.
• Uses an LSTM to calculate the node encodings.
• Used on small formulas (up to 40 variables).
• Prediction is performed per node, and aggregated by the global mean.
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Graph Neural Networks for SAT

• Heuristics for existing solvers: Providing a prediction per node whether this node is
“interesting”

• NeuroCore – NeuroSAT’s version for heuristics (Main differences: LSTM→ MLP, less
iterations)

• NeuroComb – Another architecture to provide predictions for important clauses and
variables, trained on small-medium sized formulas, tested on SATCOMP 2021.

• GraphQSAT – learning a heuristic with Q learning and GNN, trained and tested on small
formulas (1065 variables, 250 clauses)
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